Anatomy - Structured

Course overview

Modern Anatomy is about placing function in a structural context and providing adequate spatial and temporal resolution of cellular events.

Postgraduate students will be expected to complete a research project within one of our areas of interest using the extensive range of technologies available in the discipline of Anatomy. Students are required to take a number of taught modules. The Graduate Studies website provides further details on Structured PhD Programmes .

Additionally, it is envisaged that postgraduate students will participate in scientific cross-over with intra-institutional and external laboratories. It is also expected that the PhD students would contribute to teaching activities of the discipline.

Admission to our research programmes requires prior approval of the discipline.
Please contact the discipline administrator to arrange to meet the relevant staff member for informal discussion concerning research degrees.

Anatomy is a key node within the National Biophotonics and Imaging Platform and is part of the Euro-BioImaging network.

Programmes available
Structured PhD (full-time, four years)
Structured PhD (part-time, six years)

Entry requirements

PhD candidates should normally have a high honours standard in a relevant academic discipline at primary degree level or equivalent together with the support of an academic staff member who is approved by the College to supervise the research in terms of its nature and scope.

Additional entry requirements
Candidates may be required to submit a research proposal for consideration by the School as part of their application.


Structured PhD - Anatomy - 4 years full-time

Further enquiries

Ms. Fidelma Gallen
T 353 91 49 2180


Technologies available
• Sampling design; Stereology; Image analysis
• Microscopy: Confocal / ambient and low temperature Electron Microscopy
• Immunocytochemistry
• In situ hybridization (at the light and electron microscopical level)
• Lectin Histochemistry
• Behavioural/phenotypic Characterisation (Organ/cell)
• Cell culture models and/or 3D cell culture systems
• In vivo and post-mortem human brain imaging using structural and diffusion MRI, advanced MR image analysis such as non-tensor based tractography

Research areas

Areas of interest

• Reproductive Biology
• Neurobiology
• Matrix Biology
• Chromosome Biology
• Cardiovascular Biology
• Tissue Engineering
• Development
• Glycobiology
• Medical Imaging

Specialised Areas of Interest
• Integrative reproduction: structure / function of human endometrium, environmental endocrine disruption, fetomaternal interface
• In vivo and in vitro study of human diseases
• Normal and pathological development
• Role of the extracellular matrix, of matrix receptors and signalling in vivo
• Phenotypic analysis of models
• In vitro model systems—cell micropatterning and microfluidics
• Biomaterials tissue interactions
• Neuroscience: spinal cord development and injury
• Cellular responses to DNA damage
• Specific contribution to national biophotonics and imaging platform
• Education, molecular and cellular imaging, imaging technology cores
• Neuroimaging: Understanding the biological basis of mood and anxiety disorders and psychosis

Remember to mention gradireland when contacting institutions!