Biopharmaceutical Engineering with a Year in Industry
Overview
Queen’s University Belfast School of Chemistry and Chemical Engineering has a proven track record for delivering high quality teaching and research and has launched the MSc in Biopharmaceutical Engineering from this platform. This programme will provide students with the knowledge and skills required to work in the field of biopharmaceutical production, separation and purification by applying fundamental science and engineering principles. Through studying this postgraduate taught MSc, graduates will be able to gain a highly relevant qualification which will give them employability on an international level.
Through the use of theory and mathematical approaches to engineering problems, students will understand and become skilled in the development of systems which can facilitate biopharmaceuticals production and their subsequent purification.
This course is run in collaboration with our industrial partner Eli Lilly, a global company with excellent standing in the field of pharmaceutical and biopharmaceutical production and commercialisation. A collaborative course of this nature is the first of its kind in the British Isles and will provide students with real-world knowledge of how these systems are operated in an industrial setting through the case studies and first-hand knowledge imparted by the academics and industry staff delivering the course.
Course Structure
The MSc is awarded to students who successfully complete all six taught modules (120 CATS points) and a 15,000 - 20,000 word research dissertation (60 CATS points).
Exit qualifications are available - students may exit with a Postgraduate Diploma by successfully completing 120 CATS.
Subjects taught
Semester One modules
CHE7401 Medicinal Chemistry
CHE7402 Biopharmaceuticals & Upstream Processing
CHE7403 Chemical Engineering Principles
CHE7401 Medicinal Chemistry
The purpose of this module is to provide students with the knowledge of the inception of a biopharmaceutical product, what it is made from in terms of chemistry and how it will act in the body. The module is split into three lecture series: Drug Discovery, Proteins and Pharmacology.
Within each of these series there will be lectures which will look at each of the three areas in detail. This module will be delivered by staff from Chemistry and as such there will be key understanding and information imparted by leading medicinal chemists whose expertise has been instrumental in advancing the research intensity of our School.
The module is assessed on a 100% continual assessment basis - workshops, questions/problems and short essays on journals will be used.
CHE7402 Biopharmaceuticals & Upstream Processing
This module will begin the introduction of biopharmaceuticals to students, the need and context for biopharmaceutical products and also what form they may take depending on patient needs. The module is split into two lecture series (following its title) and will be assessed by a mix of formal examination (60%) and tutorials (40%).
CHE7403 Chemical Engineering Principles
The third of the first semester modules will look at the principles which are applied to chemical engineering in terms of kinetics, heat and mass transport and also thermodynamics. This module will provide students with an advanced understanding of the theory of Chemical Engineering and why these principles must be adhered to in a chemical process especially in the production of a biopharmaceutical product.
There will be a considerable mathematical element to this module and as such there is significant emphasis on the relevant workshops provided. These are assessed and will make up 75% of the available marks for the module. The remaining 25% is based on tutorial work.
Semester Two modules
CHE7404 Bioreactor Design and Bioprocess Control
CHE7405 Separations, Downstream Processing and Bioanalytical Science
CHE7406 Regulatory Affairs and Quality Systems
CHE7404 Bioreactor Design and Bioprocess Control
The content of this module will look in detail at the design of specific reactors for the carrying out of a chemical process with particular reference being made to the production of proteins in a biopharmaceutical setting. The theory which will be applied throughout this module will align with the previous module (Chemical Engineering Principles) and use the principles of chemical engineering to inform the decisions to be made when designing a reactor for a specific function. This module will be assessed through the use of workshop problems (40%) and a design project with presentation (60%).
CHE7405 Separations, Downstream Processing and Bioanalytical Science
This module looks in detail at the different methods which are employed for the purification of the crude protein following the upstream process. The module is split into four lecture series: filtration, separations, downstream processing and bioanalytical science.
The use of the state of the art analytical suite in the School of Chemistry and Chemical Engineering will facilitate understanding and development of knowledge as students will be using the analytical pieces of equipment within the laboratory to perform their own separations. This will not only aid in reinforcement of the lecture content but will also give students hands-on experience in performing chromatography- a highly desirable skill in industry. CHE7405 has a formal examination which will form 60% of the final mark for the module; the remaining 40% will be derived from submitted tutorial work.
CHE7406 Regulatory Affairs and Quality Systems
The last taught module in the course is delivered in its entirety by staff from Eli Lilly. They will contextualize the key regulatory bodies in detail, as well as the range of global regulations which apply to biopharmaceutical products. One of the unique features of this module is the fact that the content is delivered by industry experts who work with biopharmaceutical products on a daily basis and are consequently fully conversant with the regulatory requirements. This module is coursework assessed through compulsory Eli Lilly run workshops.
Summer Semester
CHE7407 Research/Design Project in Biopharmaceutical Engineering
This module usually runs run throughout the summer semester and will typically last for 12 weeks. During this time students will be given a research topic by an academic supervisor and they will take the lead in delving into this research area and produce a thesis as a result. These research projects can be either desk or laboratory based depending on student preferences.
The project will include a strong emphasis on the development of critical thinking, analysis of data and independent research. The thesis produced at the end of this project will be assessed by an academic and the student will present their results to their peers and a panel of academics.
Industrial Placement students will also have the opportunity to complete their research project (60 CATS points) on return to QUB or during their placement, with this being dependent on approval from both the industrial supervisor and the research project module coordinator. In the latter case students can submit their thesis and other necessary components upon return to the University following completion of their placement, with these aspects, and others, being assessed as per the requirements of the research project module.
Year in Industry
In Year Two, Year in Industry students will experience a biopharmaceutical engineering industry-based work environment and will have the opportunity to analyse and critically self-reflect on the experience of working in that sector, communicating their conclusions in writing. They will develop an awareness and understanding of the structures, practices and ethos of the industrial workplace as well as developing a range of highly transferable skills which will maximize their future career prospects. Placements can be undertaken in any country (subject to visa requirements).
Students enrolled on this module will be offered training and support in preparation for their placement applications as well as support during their industrial placement. Placements are competitively secured by the students and are not guaranteed by the University.
Entry requirements
Graduate
Normally a 2.2 Honours degree or equivalent qualification acceptable to the University in Chemical Engineering, Chemistry, Pharmacy, Biochemistry or closely allied subject.
Applicants with relevant work experience will be considered on a case-by-case basis.
The University's Recognition of Prior Learning Policy provides guidance on the assessment of experiential learning (RPEL). Please visit the link below for more information.
http://go.qub.ac.uk/RPLpolicyQUB
Application dates
Applicants are advised to apply as early as possible and ideally no later than 30th June 2025 for courses which commence in late September. In the event that any programme receives a high number of applications, the University reserves the right to close the application portal prior to the deadline stated on course finder. Notifications to this effect will appear on the application portal against the programme application page.
Please note: a deposit will be required to secure a place.
Duration
2 year (Full-time), 3 years (Part-time)
Enrolment dates
Entry Year: 2025/26
Post Course Info
Career Prospects
This MSc will equip you with the knowledge and skills required for a successful career in a biopharmaceutical industrial setting as a process engineer, analytical scientist or related role. Alongside this, you will have enhanced your overall career prospects in many other science-related fields.
Employment after the Course
With a course like this, you will gain highly desirable skills which will feed into the rapidly expanding industry which is biopharmaceutical production. With the vast investment on the island of Ireland alone, there will be many companies for students to gain employment in. Worldwide opportunities for employment in biopharmaceutical production and engineering provide even greater prospects.
Alongside working in the field of biopharmaceutical production, the skills and knowledge gained through this course will also give students the opportunities to work in a chemical engineering role more widely. Furthermore, with the inclusion of a separations and chromatography-focused module you will have gained highly sought after expertise in the area of chromatographical separations and analytical chemistry.
More details
-
Qualification letters
MSc
-
Qualifications
Degree - Masters at UK Level 7,Postgraduate Diploma at UK Level 7
-
Attendance type
Full time,Daytime,Part time
-
Apply to
Course provider