Computer Science - Data Science - Grangegorman

What is... Computer Science (Data Science)?
Graduates are equipped with deep technical skills (in data management, data mining, probability and statistics, and machine learning), but also with the softer skills (in communications, research and problem solving) required to work effectively within organisations.

Subjects taught

Specialist Core Modules
• Probability & Statistical Inference
• Machine Learning
• Working with Data
• Data Management
• Data Mining
• Data Visualisation

Critical Skills Core Modules
• Research Writing & Scientific Literature
• Research Methods and Proposal Writing
• Research Project & Dissertation

Option Modules (Two required)
• Geographic Information Systems
• Universal Design
• Programming for Big Data
• Problem Solving, Communication and Innovation
• Social Network Analysis
• User Experience Design
• Security
• Deep Learning
• Speech & Audio Processing
• Linear & Generalised Regression Models

Students can also take specialist core modules from the Data Science stream as optional modules, subject to availability and schedules.

Entry requirements

Minimum Entry Requirements?
The minimum admission requirements for entry to the programme are a B.Sc. (Honours) in Computer Science, Mathematics or other suitably numerate discipline with computing as a significant component. The degree should be at the level of Honours 2.1 or better or at Honours 2.2 or better with at least 2 years of relevant work experience. Applicants with other qualifications at Honours 2.1 or better level and relevant experience may also be considered.

Applicants must present a minimum IELTS English proficiency score of 6.5 overall with at least level 6.0 for each component.

Note: Due to the considerable competition for our postgraduate programmes satisfying the minimum entry requirement is not a guarantee of a place. Depending on the programme of study applications will be assessed based on academic grades and any work/life experience. Applicants may also be required to attend for interview.

Application dates

Applications for this course are now open.

Duration

2 years (min)
Mode of Study: Part Time
Method of Delivery: Classroom

Schedule
Teaching will be in the evening with classes starting at 18.00. Some critical skills modules are scheduled on a Saturday. Part-time students can progress through the course at their own pace.

The recommended pathway to complete the part-time course in 2 years requires either taking modules two evenings with Saturdays per week or for three evenings per week in each semester.

TU060 will be delivered in a blended mode with majority of learning activities delivered online with a number of onsite face-to-face touch points in each semester. These touch points include the induction event at the beginning of the academic year and face-to-face lectures and lab in weeks 1, 7 and 13 of each semester. In order to facilitate students who cannot attend, each face-to-face activity will be accompanied by an online version of the event – lectures and labs will be livestreamed from the classroom.

Post Course Info

What are my career opportunities?
Data analytics has been highlighted in a range of recent reports as an area of strategic importance both nationally and internationally. Areas in which opportunities for data analytics practitioners exist include retail, financial services, telecommunications, health, and government organisations.

Specific roles include but are not limited to:
• Data Analytics Consultant
• Data Scientist
• Data Analyst
• Data Architect
• Database Administrator
• Data Warehouse Analyst
• Business Intelligence Developer
• Business Intelligence Implementation Consultant
• Business Analyst
• Reporting Analyst

More details
  • Qualification letters

    MSc

  • Qualifications

    Degree - Masters (Level 9 NFQ)

  • Attendance type

    Part time

  • Apply to

    Course provider